If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+25t+20=0
a = -4.9; b = 25; c = +20;
Δ = b2-4ac
Δ = 252-4·(-4.9)·20
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-3\sqrt{113}}{2*-4.9}=\frac{-25-3\sqrt{113}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+3\sqrt{113}}{2*-4.9}=\frac{-25+3\sqrt{113}}{-9.8} $
| 11x-134=180 | | 12x+5(1.5x)=150 | | -2y+27.9=2.3 | | 3z=17-23 | | 110=5n-15 | | 12.5+5.42y=150 | | 5u^2+10u+7=0 | | 12.5+.42y=150 | | 110=5^n-15 | | -5v=+9=-v+17 | | -22z-0.4=-32z+1.7 | | a-2(1/2)=1(1/2) | | -25z-0.8=-35z+1.1 | | x¹⁰⁰-2x¹⁰+x=0 | | -25z-0.8=35z+1.1 | | 6u=5=11 | | -16(8y-8)=2(8-3y) | | 3.9+x=6.4 | | 8w-18w=20 | | 25x^-49=0 | | 5c+8c=13c+6=19c-2 | | 16x+3(1-2x)=4(x-3) | | 0.8+s=2560 | | 16x(1-2x)=4(x-3) | | 0.8-s=2560 | | 25x(x*2+3x)=2(2x+6) | | 10÷17a=9÷13= | | -2(2x-6)=3(3x-(1/3)) | | -4=x²+7 | | x4-3x2+6=0 | | $71=$120-($15+x+$7.50 | | 8k-k+7-(-5k)-8=0 |